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The stability of an S-shaped, cubic temperature profile, maintained by internal 
heating, is considered as a model for circumstances in which an unstably stratified 
layer of fluid is bounded by two stable layers. Critical Rayleigh numbers are 
computed for the cases of an infinitely deep layer, and for a layer of finite depth with 
symmetrically placed free or rigid boundaries. It is found that the introduction of 
boundaries can reduce the stability of the system. A weakly nonlinear analysis shows 
that the bifurcation is supercritical and that rolls are preferred to squares for all 
values of the Prandtl number. This result prompts a re-examination of the model of 
penetrative convection in water above ice, in which the bifurcation is subcritical, in 
order to understand the difference between the two models. 

1. Introduction 
In many problems in geophysical fluid dynamics, convection occurs when an 

unstably stratified layer of fluid is bounded by two stably stratified layers. As a 
model for the onset of this form of penetrative convection, the stability of a cubic 
density profile may be analysed (figure 1) .  The density profile is assumed to be caused 
by a cubic temperature profile, maintained by an internal heat source. 

This work was prompted by consideration of an ice-covered lake subjected to solar 
heating. The upper layers of the lake are warmed, and so increase in density if the 
temperature is below 4 "C, but the upper surface of the water is maintained at  0 "C 
by the ice. If the initial temperature profile is linear, solution of the diffusion 
equation with the appropriate internal heating leads to a density profile qualitatively 
similar to that of figure 1 with the temperature profile reversed (Matthews & Heaney 
1987). 

Penetrative convection is however a widely occurring phenomenon. For example, 
in stars convection below the surface overshoots into the stably stratified surface 
layer, causing the granulation pattern observed on the surface of the sun. Penetrative 
convection also occurs in the ocean and in lakes, when the surface is cooled a t  night, 
where the penetration of the mixed layer into the stable region below is important 
for thermocline formation. It also occurs in the atmosphere, when the ground is 
warmed by the sun; and may take place in the Earth's mantle, where internal 
heating is provided by radioactive decay. 

Despite all these physical applications, penetrative convection has not received 
much theoretical attention compared with Rayleigh-Be'nard convection. The one 
model which has been discussed extensively is the 'ice-water' model, first proposed 
by Malkus (1960) and analysed by Veronis (1963). In this model, a layer of water has 
a linear temperature profile around 4 "C. Because of the quadratic equation of state 
of water near 4', the density profile is parabolic, the water below the 4' isotherm 
being unstable. Veronis (1963) showed that the bifurcation a t  the critical Rayleigh 
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FIGURE 1. The temperature and density profiles under consideration, showing the lengthscale used 
for non-dimensionalization. 

number for this problem is subcritical, and the associated hysteresis effect as the 
Rayleigh number is raised and lowered has been observed experimentally by Azouni 
(1983). The subcritical bifurcation means that weakly nonlinear analysis around the 
critical Rayleigh number can only predict behaviour on an unstable solution branch, 
and hence cannot predict the chosen planform for convection. 

2. Formulation of the problem 

a temperature profile 
Consider a layer of a Boussinesq fluid, with a constant expansion coefficient a and 

T(z)  = To + Az3 - Bz, (2.1) 

where A and B are positive constants. To maintain this temperature profile we 
require an internal heat source, H ( z )  = -6KA2, where K is the thermal diffusivity. 
(For the case of an ice-covered lake, A ,  B and a are negative. The solar heat source 
declines exponentially, but a linear heat source can capture the essential shape of the 
temperature profile.) Non-dimensionalizing with d = ( B / A ) i  as a lengthscale and Bd 
as a temperature scale, and introducing a perturbation temperature 0, the equations 
for momentum and heat transport become 

=-VP+RBf+V2u, 
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where u = v /K  is the Prandtl number and R is the Rayleigh number given by 

3. The linear stability problem 
The linearized forms of (2 .2 )  and ( 2 . 3 )  are 

1 au 
= -VP+R8i+V2u, _ _  

u at 

Since it can be shown that there is no vertical vorticity, u may be represented as 
u = (u, v ,  w) = V x V x ($2). Setting $ = h(x,  y) f(z) est, 0 = h ( z ,  y) g(z)  est and taking 
2 .  V x V x (3 .1 )  we obtain 

(3 .3 )  V& h = - k2h, 

S 

CT 
- ( D 2 -  k2)f  = -Rg + ( D 2  - k2)*f ,  (3 .4 )  

$9 = k 2 f ( l - 3 z 2 ) + ( D 2 - k 2 ) g ,  (3 .5 )  

where k is the horizontal wavenumber of the disturbance, D2 = d2/dz2 and V& is the 
horizontal Laplacian. Eliminating g leads to 

(D2 - k2)  (D2 - k2 - f + R k 2 ( 1 - 3 z 2 ) f =  0 

It can be shown (Veronis 1963) that 5 is real for a growing or neutral mode 
(Re(s) 2 0) ,  in the case of an unbounded region of fluid or with stress-free 
boundaries, but this principle of exchange of stabilities cannot be proved for rigid 
boundaries. If it does hold, we can set s = 0 to examine the onset of instability. The 
eigenvalue problem for R,(k)  is then 

(D2 - k2)3f+ R, k2( 1 - 3z2) f  = 0, (3 .7 )  
where the subscript 0 denotes that the Rayleigh number is critical. 

3.1.  Unbounded case - solution by Fourier transform 
Taking the Fourier transform of (3 .7 )  gives 

(w2 + k ' ) )" f ( (~ )  - R, k2fio) - 3R, k2- d2fi4 - - 0, 
do2 

m 

where f(o) = J-m e-'"'"f(z) dz 

is the Fourier transform of f ( z ) .  T)e transform f ( w )  exists because f ( z ) + O  as 
z+ k co; similarly, for f(z) to :xist, f(o) must tend to zero at  large IwI. A shooting 
method was used to solve forf(w), with the boundary conditions 

a3 

f (0 )  = f(z)dz = 1,  
-m 
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since the scaling of f(z) is arbitrary, and 

-(O) df = /-:-izf(x)dx = 0, 
dw 

since for the lowest eigenvalue we expect f(z) and hence f ( w )  to be even. Equation 
(3.8) was integrated numerically from w = 0 u$ng a fourth-order Runge-Kutta 
method, and the parameter R was varied until f ( w )  approached zero a t  large w .  

The function R , ( k )  has a single minimum which occurs a t  

k ,  = 1.26, R, = 88.0, 

where the subscript c denotes the minimum critical Rayleigh number and the 
associated wavenumber. To compare these values with those for convection between 
two parallel plates, we can use the depth of the unstable layer as a lengthscale, and 
the temperature difference across the unstable layer as our temperature scale. With 
this scaling, the critical values of k and R become 

k ,  = 1.45, R, = 104. 

R, is considerably less than that for Rayleigh-BBnard convection, which is 657 for 
stress-free boundaries and 1708 for rigid boundaries. Latour & Zahn (1978) found 
that for an unstable linear profile bounded by two stable linear profiles with the same 
density gradient, 

This ‘Z’ profile is rather less stable than our ‘S’ profile, perhaps because of the sharp 
discontinuities in the temperature gradient of the former, or because of the rapidly 
increasing temperature gradient in theAstable regions of the latter. 

Having obtained a solution for f ( w ) ,  the Fourier transform was inverted 
numerically to find f(z). The results show that convection overshoots well into the 
stable layer, the top of the main cell being a t  x = 1.69 in our scaling. Above this there 
is a weak countercell, driven by viscous forces from the main cell. Figure 2 shows w, 
u and 0, with arbitrary scaling, and figure 3 shows the streamlines, assuming 
convection in the form of rolls, i.e. h(x,  y) cc cos ( k x ) .  The streamlines are plotted 
much more closely in the countercell than in the main cell. There is in fact a sequence 
of countercells, alternating in direction of rotation and becoming weaker in 
magnitude and shorter in depth, which can be found by asymptotic methods. 

The Fourier-transform method was also used to look at the first odd solution of 
(3.8), corresponding to a solution with two main convection cells. This gave the 
results k, = 2.91, R, = 3705. 

k ,  = 1.05, R, = 60.9. 

3.2. Stress-free boundaries 
We now consider the effect of introducing stress-free, constant-temperature 
boundaries a t  z = L and z = -L. In this case, f(z) obeys (3.7) with the boundary 
conditions 

f= D y =  D y =  0 a t  z = fL. 

Expanding f(z) as a cosine series, 
co 

f(z) = c A ,  cos 
n=l 

(3.9) 
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FIGURE 2. The vertical and horizontal velocity and the temperature fluctuation of the linear 
solution, with arbitrary scaling. 
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FIGURE 3. Streamlines in the main cell and first countercell, showing the stream-function values at 
the centre of each cell. 
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FIGURE 4. Variation of critical wavenumber and Rayleigh number with position of stress-free 
boundaries, using an N-term cosine series. 

automatically satisfies these boundary conditions. Substituting (3.9) into (3.7), 
multiplying by cos [(m-t)  m / L ]  and integrating from x = -L  to z = L gives the 
following relationship between the A ,  : 

6R0 k2L2 [ ( -  l)m-n + ( -  l)m+n-l] 
A, = 0. (3.10) 

+ 7c2 n*m (iiz-n)2 (m+n--1)2 

If the series is truncated at n = N, then (3.10) gives N homogeneous equations for the 
A,, so Ro(k)  is given approximately by the condition that the order-N determinant 
vanishes. 

For each value of L, k was varied until the value of R, found from the zero of the 
determinant was minimized. Figure 4 shows how R, and k, vary with L, and how 
each N-term cosine series breaks down as L increases. The maximum number of 
terms used was four, giving accuracy up to about L = 3.5. The accuracy can be 
judged by comparison of the 3-term results with those using 4 terms, and by 
comparing the results at large L with those obtained for the case without boundaries : 
R,(L) appears to be tending to 88, and k,  to 1.26, a t  large L. Note that R,(L) and 
k , ( L )  are oscillatory functions. R, has a minimum of 41.7 a t  L = 1.32, less than half 
its asymptotic value. This effect was also found by Veronis (1963), for his penetrative 
convection model described in $ 1 ,  but it was much less marked, the ratio of the 
minimum critical Rayleigh number to  its asymptotic value being 0.85. 

The reason why boundaries can reduce R, is that they can cut out the regions of 
negative convective heat flux near the top and bottom of the main cell and in the 
countercells (figure 2) which reduce the efficiency of convection. The minima and 
maxima in figure 4 are caused by the changes in sign of w and 8 as L is increased. 
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FIGURE 5.  Variation of critical wavenumber and Rayleigh number with position of rigid 
boundaries, using a 4-term cosine series. 

3.3, Rigid boundaries 

The problem for rigid boundaries can be considered in a similar way, if the principle 
of exchange of stabilities is assumed. The cosine series does not satisfy the boundary 
conditions, which are f = Df = g = 0 at z = & L. Since D y  + 0 at the boundaries, the 
cosine series is only once differentiable and D2f(L) is an extra parameter in the 
problem. For this we require an extra equation, which comes from the second 
boundary condition : 

N 

(3.11) 

Figure 5 shows that the results are qualitatively similar to those for stress-free 
boundaries. Again R,(L) approaches 88 and k,(L) approaches 1.26 a t  large L. The 
minimum Rayleigh number is R, = 65.9 a t  L = 1.6, so introducing rigid boundaries 
can also makg the system less stable, although not to the same extent as stress-free 
boundaries. However the critical Rayleigh number for rigid boundaries is less than 
that for stress-free boundaries for 1.6 < L < 2.0. 

4. Weakly nonlinear analysis 
A weakly nonlinear expansion method is now used to study the bifurcation a t  

R, and to compare two different planforms. The method is standard, and similar to 
that used by Jenkins & Proctor (1984). The variables are expanded in a power series 
as follows : 

u = Eu, + €2U2 + 63u3. . . , e = €0, + €28, + €30,. . . 
P = cP,+E~P,+E~P~.  . . , R = R,+e2R2.. , 

and the evolution of the system is studied on a slow timescale 7 = e2t. These 
expansions are substituted into the nonlinear equations (2.2) and (2.3) and powers of 
E are equated. 

At first order in e the linearized equations appear, so we can set u1 = U x U x 
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($1 4, where $1 = h(x ,  y)f(z), and 01 = h(x, Y) g ( z ) ,  where g(z )  = ( l / R c )  (D2-k2)2f(z), 

h(x, y) = A1(7) cos k x + A , ( ~ )  cos ky (4.1) 

from (3.4). Setting 

allows the possibility of convection in the form of rolls ( A ,  = 0) or squares 
( A ,  = A,) ,  both of which have been shown to occur in certain physicalproblems (e.g. 
Jenkins & Proctor 1984). $, can then be written as $11 + $12 where $,, = A ,  cos k x f ( z ) ,  
$12 = 4 cos kYf(2). 

At second order, the equations are 

1 
-u, * VU, = - VP, + R, 0, f+ V2u2, (4.2) 
U 

U1 * V0, = w2( 1 - 3z2) + v20,. (4.3) 

Taking f. V x V x (4.2) gives 

f - V x V x -u, * VU, = - R, V& 0,-V4w,. (4.4) (: 1 
As at first order, u, can be written as u2 = V x V x ($,f). Now the forcing terms on 
the left-hand sides of (4.3) and (4.4) have a horizontal dependence which suggests the 
following forms for qh2 and 8,: 

$4, = (A;  cos2kx+Ai cos2ky)F2(z)+A,A, coskx coskyF,(z), (4.5) 

0, = (A;  + A : )  G,(z) 

+ ( A ;  cos2kx+Ai cos2ky)G,(z)+A1A, coskx coskyG,(z). (4.6) 

Substituting into (4.3) and (4.4) gives five differential equations for the five second- 
order functions, which can be solved by a shooting method, using the fact that these 
are all odd functions of z because the forcing terms are odd. This was done using a 
Rung-Kutta method, with a step length of &, taking each function as far as x = 4. 

At third order in 6 ,  the time dependence appears: 

- -+u, V U , + U , .  VU, - R 2 8 , f =  -VP3+R,0,z"+V2~,, (4.7) 

(4.8) 

a7 1 rul 
a01 -+U,. v0,+u2. we, = w,(1-322)+v203. a7 

By taking 2 V x V x (4.7) and eliminating 0, we obtain 

V6w,- R, V& w3(1 -3x2) = -V2(? V x V x r l ) -  R, V& r,, (4.9) 

where rl and r2  are the left-hand sides of (4.7) and (4.8) respectively. 
The operator on the left of (4.9) is the same self-adjoint operator as occurred at  first 

order with zero forcing. Hence by multiplying (4.9) by either of the first-order 
functions $,, or q512, averaging in x and y and integrating in the z-direction, we can 
derive the two solvability conditions 

( $ 1 1 , 1 2 ( V 2 f ~ V ~ V ~ r l + R c V & r 2 ) )  = 0, (4.10) 
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where ( ) denotes the horizontal averabe and vertical integral. Evaluation of the 
solvability conditions leads to the following equations for the time evolution of A ,  
and A , :  

C- d A 1  = DR, A ,  + EA; + FA,  A:, (4.11a) 
d r  

dA c2 d7 = DR, A ,  + E A i + F A ,  A ; ,  (4.11b) 

where the numbers C, D, E and F are integrals of quantities involving the first- and 
second-order functions. 

The numbers C and D involve only the first-order functions and are always 
positive, so the linear parts of (4.11) simply repeat that the static solution is linearly 
stable for R < R,. There are three other possible equilibria, 

(4.12) 

(4.13) 

(4.14) 

The solutions (4.12) ant (4.13) correspond to rolls, while (4.14) represents squares. 
If E > 0, then roll solutions exist for R, < 0 and the bifurcation is subcritical. If 
E < 0, the bifurcation to rolls is supercritical. For squares, the bifurcation is 
subcritical if E + F  > 0 and supercritical if E + F  < 0. Using (4.11) to analyse the 
stability of these solutions, it can be shown that rolls are stable if E < 0 and E > F ,  
while squares are stable if E + F < 0 and E < F .  

The constants E and F were evaluated using a Romberg integration routine, using 
64 points and taking each function as far as x = 4.0. The results were 

0.233 0.231 15.1, E = 
U2 (T 

(4.15) 

Note that these values are proportional to  the fourth power of the arbitrary scaling 
a t  first order, which was chosen such that f ( 0 )  = 1. The calculations were repeated for 
the case of stress-free boundaries a t  z = f 3.2, expressing the second-order functions 
as a 4-term sine series, giving very similar results, with a difference of less than 
2 Yo. 

For all values of the Prandtl number, E and F are negative and E > F .  This means 
that the bifurcation at R, is supercritical, and that rolls are preferred to squares. We 
cannot say that the roll planform will be selected, because we have not considered all 
possible planforms. It was checked that the odd solution to (3.7) also leads to a 
supercritical bifurcation. 
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5.  Comparison with the Veronis model 
The result that the bifurcation is supercritical in our ‘S’ model contrasts with that 

of Veronis (1963), who found a subcritical bifurcation for his model of penetrative 
convection. In the latter model, the equation of state is 

A T )  = PO(1 -P(T-AT)2)> (5.1) 

where AT = 4 “C. Using the depth d of the unstable layer as a lengthscale and AT as 
a temperature scale, the equations analogous to (2.2) and (2.3) are 

- -+u.vu = -VP+R(20(z-l)+82)ZA+V2U, 
u I(a, at 1 

ae 
at 
-+u * V ( Z + ~ )  = VZ6, 

where the Rayleigh number is defined by 

gP AT2d3 R =  
VK ’ 

(5.3) 

(5.4) 

The linear problem corresponding to (3.7) is 

( ~ 2 - - ~ ) 3 f + 2 ~ ~ - 2 ( 1 - - z ) f =  0, 15.5) 

where f(z) now denotes the temperature fluctuation rather than the velocity. For the 
case of a stress-free boundary a t  z = 0 maintained a t  0 “C with unbounded fluid 
above, a shooting method was applied to (5.5) to show that k, = 1.59, R, = 275.4. 

The weakly nonlinear analysis was carried out in a similar manner to that 
described in $4. The values of E and F obtained were 

0.251 0.245 + 22.6. E = 

1.03 23.9 
uz u 

F=-- + - + 97.7. (5.7) 

At high Prandtl number, both rolls and squares are subcritical (E ,  F > 0) ,  so it is 
impossible to tell from the weakly nonlinear analysis which is preferred. A t  low 
Prandtl number however, squares are more likely to be observed since the roll 
solution becomes supercritical. The value of u a t  which the roll solution changes from 
subcritical to supercritical is that  for which E = 0, which is u = 0.11. This result 
agrees well with computational work done by N. H. Brummell a t  Imperial College 
(personal communication). 

The essential difference between the Veronis model and the ‘S’ model is that in the 
former, the curved density profile’ is caused by a nonlinear equation of state with a 
linear temperature profile, while in the latter it is produced by a linear equation of 
state and a nonlinear temperature profile. This means that the argument for the 
occurrence of a finite-amplitude instability in the Veronis model, where mixing 
maintains the temperature difference across the unstable layer while increasing its 
depth and hence the Rayleigh number (Moore & Weiss 1973), does not apply to the 
‘S’ model, where mixing would tend to erode the cubic temperature profile, leading 
to a smaller temperature difference across the unstable layer. 
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To check that it is this difference between the two models that causes the 
qualitative difference in the results, rather than the fact that one of the models has 
a boundary, it is useful to consider a third model, in which a density profile identical 
with that of the Veronis model is produced by a linear equation of state and a 
quadratic temperature profile maintained by uniform internal heating. In  this 
model, (5.5) is obtained, with f representing the vertical velocity, so the critical 
Rayleigh number is the same as for the Veronis model. The extent of overshooting 
in the main cell is different however, being up to  z = 2 1  compared with z = 1.5 for 
the Veronis model ( z  = 1 is the point of maximum density). The nonlinear behaviour 
is quite different, the equations analogous to (5.2) and (5.3) being 

= - V P + R @ + V 2 u ,  

a8 
- + u *  V(z2-22+8) = V28. (5.9) at 

The nonlinear analysis was repeated for this model, for rolls only, with the result that 
the bifurcation is always supercritical. Thus this model behaves more like the ‘S’ 
model than the Veronis model, so the subcritical behaviour of the Veronis model is 
indeed due to the use of a nonlinear equation of state. 

6. Vertical asymmetry and the hexagonal planform 
The ‘S’ model for penetrative convection considered up to now has had a rather 

artificial upclown symmetry. This forces the form of the evolution equations (4.11) 
to share that symmetry, leading to  a symmetrical bifurcation. If the symmetry is 
broken then a transcritical bifurcation is possible for the asymmetric hexagonal 
planform given by 

With this loss of symmetry, the expansions for R and t become R = R, f s R , ,  . . . , 
7 = ct. The solvability condition is then applied a t  second order in the expansion, 
giving 

(6.2) 
dA 

C- = D R , A + G A 2 ,  ar 
where G and I) are the same positive quantities as in (4.11) and G involves integrals 
of terms that are cubic in the first-order functions and their derivatives. For the 
symmetrical problem the first-order functions are even and G = 0. If G > 0, steady 
subcritical (R, < 0) solutions exist with A > 0, corresponding to ‘up’ hexagons, with 
the flow directed upwards a t  the centre of each hexagon. G < 0 allows subcritical 
‘down ’ hexagons. 

The required asymmetry may easily be introduced in the boundary conditions. For 
the case of a stress-free boundary a t  x = - 1, with unbounded fluid above, the 
solution to the linear problem is k, = 1.18, R, = 76.4, which was found using a 
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Thus a t  high Prandtl number, ‘up’ hexagons may occur subcritically, but for 
v < 0.268, ‘down ’ hexagons occur. 

This analysis was repeated for a rigid boundary at x = - 1 ,  and for a stress-free 
boundary a t  z = 0, which also corresponds to the odd-mode solution of the original 
problem without boundaries. In  each case the result was qualitatively the same, with 
‘up’ hexagons a t  high Prandtl number and ‘down’ hexagons a t  low Prandtl 
number. 

For Veronis’ model of penetrative convection, which does not have vertical 
symmetry, a similar calculation shows that ‘up’ hexagons can occur subcritically for 
all values of the Prandtl number. 

7. Discussion 
The most interesting result of this work is that the bifurcation in our ‘S’ model of 

penetrative convection is supercritical. This means that weakly nonlinear theory can 
be used to predict the planform of convection near onset, with the result that rolls 
are preferred to squares. For the model studied by Veronis (1963)’ the bifurcation is 
subcritical, so the planform cannot be predicted, except a t  low Prandtl number, 
where squares are preferred because the roll solution becomes supercritical. The 
subcritical bifurcation of the Veronis model is caused by the use of a nonlinear 
equation of state. The results suggest that if penetrative convection is caused by a 
nonlinear equation of state, the bifurcation is subcritical, while if it is caused by a 
nonlinear temperature profile, the bifurcation is supercritical. The Veronis model 
should not therefore be applied to penetrative convection that is caused by a 
nonlinear temperature profile, for example convection in the ocean due to surface 
cooling a t  night, as it underestimates the extent of overshooting and introduces a 
finite-amplitude instability. 

There are a number of reasons for caution when applying this work to ice-covered 
lakes. First, the results are only applicable for Rayleigh numbers close to critical, 
while in nature, Rayleigh numbers are often lo6 or higher. Secondly, the model 
describes a simplified approximation to the temperature profiles produced in ice- 
covered lakes by the effect of solar heating (Matthews & Heaney 1987), particularly 
in its assumption of a steady state. 

A t  higher Rayleigh numbers, the problem becomes meaningless as specified here, 
because the Rayleigh number given by (2.4) is not under experimental control since 
convection breaks down the temperature profile. A proper definition of the Rayleigh 
number would have to involve the strength of the internal heating function rather 
than the temperature difference in the unstable layer. 

I am grateful to Dr T. J. Pedley, Dr P.  F.  Linden, Dr M. R. E. Proctor and Dr 
S. I. Heaney for their helpful criticism, and to the N.E.R.C. for financial support 
through the CASE studentship scheme. 
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